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Abstract. The analysis of thin rectangular orthotropic all round clamped plate carrying lateral loads was investigated in 
this study. The Ritz total potential energy functional was used. The minimization of the total potential energy functional 
gave the expression for the coefficient of deflection. The coefficient of deflection was used to derive the equation for the 
lateral load parameter of an orthotropic thin rectangular plate carrying lateral load. A polynomial shape function which was 
obtained by the direct integration of the governing equation was used to obtain the stiffness coefficients which were 
substituted in the load parameter equation to obtain the load parameter coefficients for a CCCC plate carrying lateral 
forces. Numerical examples using permissible deflection (varying from 5mm to 20mm with 5mm interval) and plate 
thickness (varying from 5mm to 12.5 mm with 0.5mm intervals) were done to determine the load parameters 
corresponding to an orthotropic thin rectangular CCCC plate carrying lateral loads (when n1 = Ey/Ex = 0.7 and n2 = G/Ex = 
0.41) for aspect ratios (b/a) of 1.0, 1.25 and 1.50 
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Notations: a: Length of the plate along x axis, b: Length 
of the plate along y axis, w: Deflection equation of the 

plate, A:Coefficient of deflection of the plate, h :Shape 

function of the plate, x : normal strain along x – 

direction, : normal strain along y – direction, : 

Shear Strain on x – y plane, μxy: Poisson ratio along x 
axis, μyx: Poisson ratio on y axis, Ex: Elastic modulus in 
the x direction, Ey: Elastic modulus in the y direction, 
Gxy: Shear modulus in the x-y plane, ∝: Aspect Ratio = 
b/a, t: Thickness of the plate, x: Primary axis of the 
plate, y:Secondary axis of the plate, z: Axis 
corresponding to the thickness of the plate, C: Clamped 
Support, R: Non-dimensional coordinate equal to x/a, Q: 
Non-dimensional coordinate equal to y/b, q: Lateral load 
uniformly distributed, n1: Ratio of the young modulus in 
y direction to the young modulus in the x direction, n2: 
Ratio of the shear modulus in x-y plane to the young 
modulus in the x direction. 

1.0 Introduction 

Flat plates are initially flat structural members bounded 
by two parallel planes, called faces and rectilinear or 
curvilinear surface called an edge or boundary. The 
generators of the cylindrical surface are perpendicular to 
the plane faces. The distance between these plane faces 
is called the thickness, which is small as compared with 
the other characteristic dimensions of the plate 
(Kapadiya H. M. and Patel A. D, 2015). Szilard (2004) 
defined thin plates as one whose ratio of its basic 
dimension to its thickness falls within the range 10 ≤ a/h 
≤80. 
Plates are used greatly in many fields including but not 
limited to aerospace, naval, marine, mechanical, 
architectural, structural, and highway engineering. 
Specifically, plates are used in bridge decks, naval and 
marine structures, architectural structures, containers, 
airplane panels, spacecraft panels, ship decks, machine 
parts (components) and hydraulic structures. They are 
classified by their plan shapes as rectangular, circular, 

elliptical, square, triangular etc. They are also classified 
according to their materials of construction as 
homogeneous, heterogeneous, isotropic, anisotropic and 
orthotropic. 
Thin rectangular plates can support loads in many ways. 
They can be laterally loaded (loads parallel to the 
thickness), axially or biaxially loaded with in-plane 
loads (loads perpendicular to the thickness) or a 
combination of lateral and in-plane load. They can also 
support dynamic loading. A thin rectangular panel 
subjected to increasing in-plane compressive load will at 
a point transit from its stable state of equilibrium to the 
unstable one, just like columns. Such transition is known 
as structural instability or buckling (Osadebe et al., 
2016). Many aspects of the analysis of thin plates 
subjected to different loading conditions have been 
carried out by some scholars. The use of energy methods 
such as the Ritz method, Galerkin’s equilibrium method, 
work error method was used by Ibearugbulem et al. 
(2014) to carry out the analysis of thin isotropic plates 
for the cases of pure bending and also for buckling cases. 
The flexural analysis of rectangular Kirchhoff plates 
with clamped and simply supported edges was done by 
Nwoji et al. (2017). They compared the maximum 
deflection and maximum bending moments obtained 
with solutions obtained by Timoshenko and 
Woinowsky-Krieger, and found them to be in good 
agreement for a four term displacement shape function. 
Cui (2007), in his master of philosophy thesis did the 
exact bending solutions of clamped rectangular thin 
plates using the symplectic elasticity approach and 
recorded that the maximum bending moment 
coefficients obtained were in agreement with the works 
of Timoshenko and Woinowsky-Krieger. The Galerkin 
method has been used by Onwuka and Iwuoha (2017), 
Iwuoha (2016) and Yattender (2005) in the buckling 
analysis of isotropic thin rectangular plates. While 
Onwuka and Iwuoha (2017) did on CCCC isotropic 
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plate, Ventsel and Krauthermmer, Iyengar and Chajes, 
individually carried out works on biaxially loaded SSSS 
plate subjected to uniform in-plane loads on both axis. 
Ezeh et al. (2013) used finite difference method for the 
analysis of laterally loaded thin plates. 

2.0 Theoretical Background 
The Ritz total potential energy functional for pure 
bending of an isotropic plate is given as: 

П 	
D
2

∂ w
∂x

	
∂ w
∂ ∂

∂ w
∂y

∂x ∂y	

q w∂x ∂y																																														1 

Equation 1 is a functional. Minimizing of Equation 1 
with respect to the displacement, w gives the equilibrium 
equation or the resultant force acting on the plate from 
where the problem can be solved. 

3.0 Methodology 
The method used in this work is as presented below. 

3.1 Formulation of the Equation for the Lateral Load 
Parameter for an Orthotropic Thin Rectangular 
Plate carrying Lateral Loads 
The total potential energy functional of an orthotropic 
thin rectangular plate carrying lateral load is obtained by 
writing Equation 1 in terms of an orthotropic plate where 
the plate material properties are not the same in all axes. 
This was done by Bertram [1] in his master’s degree 
thesis. This is as given in Equation 2. 
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1
2

D
∂ w
∂x

	 2B
∂ w
∂ ∂

D
∂ w
∂y

∂x ∂y	

q w∂x ∂y																																												2 

Where,  

D
E t

12 1 	n μ
																																																											3 

D 	
E t

12 1 	n μ
																																																										4 

B
n1Ex. μxy	t

3

12 1 	n1μxy
2

	 	
2Gt3

12
																																														5 

n1 is the ratio of modulus of elasticity along y axis to that 
along x axis, Ey/Ex. 
Consider a thin, rectangular, orthotropic plate, clamped 
on all edges and supporting uniform distributed lateral 
load, q as shown in Figure 1. 

 

 
 
 
 
 
 
 

 

Figure 1: Schematic Representation of CCCC plate 
carrying uniformly distributed lateral load (q) 

The Cartesian coordinates, x and y turned to are non-
dimensional coordinates, R and Q and expressed as:  

R 	
x
a
; 													Q 	

y
b
																																																									6 

The deflection and the slope are zero along the clamped 
edges. Thus, the boundary conditions of the CCCC plate 
are 

w R 0 	 	0; 	w′ R 0 	 	0																															7 

w R 1 	 	0; 	w′ R 1 	 	0																															8 

w Q 0 	 	0;	w′ Q 0 	 	0																															9 

w Q 1 	 	0;	w′ Q 1 	 	0																													10 

Where	w and	w are	the	first	derivatives	of		the	displacement	 

functions	with	respect	to	R	and	Q	respectively. 

From Equation 6, x = Ra and y = Qb. 

Substituting x = Ra, y = Qb and ∝	 	b/a	into	Equation	
2	gives:	

Π
ab
2a

D
∂ w
∂R

2B
∝

∂ w
∂R∂Q

D
∝

∂ w
∂Q

dR	dQ

ab qw dR	dQ																				11 

General Variation of Total Potential Energy 
Functional 
Minimizing Equation 11 with respect to deflection, w 
gives the equilibrium equation, otherwise known as the 
governing equation of equilibrium of forces as: 

F
dΠ
dw

D
∂ w
∂R

2B
∝

∂ w
∂R ∂Q

D

∝
∂ w
∂Q

qa dR	dQ 0																													12 

The solution of Equation 12 is summarized as shown in 

Equation 13. 

w 1		R		R R R

a
a
a 2⁄
a 6⁄
a 24⁄

1	Q		Q Q Q

b
b
b 2⁄
b 6⁄
b 24⁄

						13 

Equation 13 shows the deflection of the plate as a 

product of the coefficient of deflection (A) and an 

orthogonal polynomial shape function (h). 

w Ah																																																																																	14 

a 

x

b Lateral uniform load, 

y
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Substituting w = Ah as given in Equation 14 into 
Equation 11 gives 

П
A
2a

D
∂ h
∂R

2B
∝

∂ h
∂R∂Q

D
∝

∂ h
∂Q

ab ∂R ∂Q

qA hab∂R∂Q																						15 

Equation 15 can be written as shown in Equation 16 

П
A
2a

D K 	 	
2B
∝	

K 	
D
∝	

K 	 ab

	qAK ab																																							16 

Where,    

K 	 	
∂ h
∂R

∂R∂Q																																														17 

  

K 	
∂ h
∂Q

∂R∂Q																																															18 

K 	 	
∂ h
∂R∂Q

∂R∂Q																																								19 

K 	 h ∂R∂Q																																																											20 

         
Direct Variation of Total Potential Energy 
Functional 
If Equation 16 is minimized with respect to the 
coefficient of deflection, A, direct governing equation 
(Equation 21) is obtained. 
∂П
∂A

	0 	
A
a

D K
2B
∝

K 	 		
D
∝

K 	 ab

qK ab																																											21 

Rearranging Equation 21, gives the coefficient of 
deflection (A) as: 

A
qa K

D K 	 		
∝
K 	 		

∝
K 	

																																	22 

Equation 22 can be written as  
AD
qa

K

K 	
∅

∝
K

∅

∝
K 	

																																			23 

Where, 

∅
B
D

																																																																										24 

∅
D
D

																																																																												25 

 
AD
qa

K
K

																																																																								26 

Where;  

K K 	
2∅
∝

K
∅
∝

K 																																				27	

Substituting Equation 26 into Equation 14 gives 
wD
qa

	
K
K

h																																																																				28	

wD
qa

	K h																																																																			29 

Where, Km is given as the ratio of load stiffness 

coefficient to total material stiffness coefficient. This is 

defined mathematically as: 

K 	
K
K

																																																																									30 

Let wall represent the allowable deflection of the plate. 
Therefore,  

w 	
D
qa

K h																																																														31 

qa
D

	
w 	

K h
																																																																					32	

Substituting Equation 3 into Equation 32 
12qa 1 	n μ

E t
	
w 	

K h
																																									33 

Rearranging Equation 33 gives 
qa
t

	
w 	. E

12	K h 1 	n μ
																																								34 

qa a/t 	
w 	. E

12	K h 1 	n μ
																																		35 

 
3.2 Peculiar Deflection Function and Stiffness 
Coefficients of Orthotropic Thin Rectangular CCCC 
Plate 
The deflection equation shown in Equation 13 can be 
written for the x axis as: 
w a 	a R a R a R a R 																									36
  
Differentiating Equation 36 once with respect to R, gives 

Equation 37 

w 	a 	2a R		 	3a R 	 	4a R 																									37 

Substituting the boundary conditions given in Equations 

7 and 8 into Equations 36 and 37 gives: 

a 0, a 0,						a a 		and			a 	 	 2a 							38 

Substituting Equations 38 into Equation 36 gives the 

deflection equation for CCCC plate along the x axis as: 

w a R 2R 	R 																																																		39
  
In a similar manner, the deflection equation for CCCC 
plate along the y axis is given as: 
w b Q 2Q 	Q 																																																	40 

The general deflection equation is, therefore, obtained as 
the product of the deflection equations in both x and y 
axes: 
w 	w w 	a b R 2R 	R Q 2Q

	Q 																																																				41 

Where: A 	 a b  
h 	 R 2R 	R Q 2Q 	Q 																						42 
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3.3 Determination of the Maximum Lateral Load 

Parameter for CCCC orthotropic plate 

The stiffness coefficients given in Equations 17 to 20 are 

determined using Equation 42 as follows: 

K
∂ h
∂R

∂R∂Q

	 4
48
2

192
3

288
4

144
5

1
5

4
6

6
7

4
8

1
9

	0.001269841														43 

K
∂ h
∂R∂Q

∂R∂Q

4
3

24
4

52
5

48
6

16
7

4
3

24
4

52
5

48
6

16
7

	0.00036281179																																																																								44 

K
∂ h
∂Q

∂R∂Q

1
5

4
6

6
7

4
8

1
9

4
48
2

192
3

288
4

144
5

	0.001269841													45 

K h∂R∂Q 	
1
3

2
4

1
5

1
3

2
4

1
5

	0.00111111																																																																																46 

h 	for	CCCC	occurs	at	R	 	Q	 	
1
2

 

h 	
1
2

2
1
2

1
2

1
2

2
1
2

1
2

	0.00390625																																											47 
	

3.4 Numerical example 
The material properties of CCCC plate include: 

E 207 10 N m⁄ ;	μ 0.3; 	0.1 E E⁄

1; 0.385 G E⁄ 0.415; 	0.03 μ μ⁄

0.3; 	80 a t⁄ 200;	w 	

0.005	m, 0.010	m, 0.015	m, 0.020	m; Span, a 1	m  

Substituting Equations 43, 44 and 45 into Equation 27 

gives 

K 0.001269841 	
0.000725624∅

∝
0.001269841∅

∝
																											48 

Substituting Equations 46 and 48 into Equation 30 gives 

K

	
0.00111111

0.001269841 	
. ∅

∝

. ∅

∝

						49 

K

	
1

1.142858 	
. ∅

∝

. ∅

∝

																							50 

Substituting Equation 3 and 5 into Equation 24 

∅
n E . μ 	t

12 1 	n μ
	 	

2Gt
12

12 1 	n μ

E t
												51 

Simplifying Equation 51 gives 

∅ 	n . μ 	 	2n . 1 n μ 																																												52 

Substituting Equations 3 and 4 into Equation 25 gives 

∅
E t

12 1 	n μ

12 1 	n μ

E t
	
E

E
	n 														53 

If Equations 47 and 50 are substituted into Equation 35 
then Equation 54 is obtained: 

qa a/t

	
w 	. E 1.142858 	 . ∅

∝

. ∅

∝

12	x	0.00390625 1 	n μ
										54 

qa a/t

	
w 	. E 24.380971 	 . ∅

∝

.

∝

1 	n μ
						55 

4.0 Results and Discussion 
The values of the parameter 12 required for the 
calculation of the lateral load parameter for an 
orthotropic plate are presented on Table 1. Plate 
thickness varying from 5mm to 12.5mm (with 0.5mm 
intervals), allowable deflection varying from 5mm to 
20mm (with 5mm interval), aspect ratio values varying 
from 1.0 to 2.25 (with 0.25 interval) were used for the 
computation of the Load Parameters and the results 
presented on Table 2. The results presented on Table 2 
were plotted for a square plate as shown on Figure 1. 
From Figure 1 and Table 2, it could be observed that, as 
the value of plate thickness increases, the Load 
Parameter of CCCC plate increases for any allowable 
deflection. This is so because the plate tends to sustain 
more loads when the thickness is increased due to 
increase in the stiffness of the plate. 
The maximum deflection coefficients for the CCCC 
plate were calculated using Equation 32, in order to 
validate the results of this work. The results obtained at 
n1 =1 (isotropic case) were compared with that of 
Ibearugbulem et al. (2014) as presented on Table 3. 
From Table 3, it is seen that, the results obtained from 
this present work when n1 =1, is in very much agreement 
with established results of laterally loaded isotropic 
CCCC plate for different aspect ratios as the maximum 
percentage difference is -0.340. This therefore, validates 
the results of the generated load coefficients. 
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Table 1: Values of the parameter 12 required for the calculation of the lateral load parameter for an orthotropic plate 
 

 12 
n

1 
 n2 
 0.385  0.39  0.395  0.4  0.405  0.41  0.415 

0.1  0.79307  0.80298  0.81289  0.8228  0.83271  0.84262  0.85253 

0.2  0.81614  0.82596  0.83578  0.8456  0.85542  0.86524  0.87506 

0.3  0.83921  0.84894  0.85867  0.8684  0.87813  0.88786  0.89759 

0.4  0.86228  0.87192  0.88156  0.8912  0.90084  0.91048  0.92012 

0.5  0.88535  0.89490  0.90445  0.9140  0.92355  0.93310  0.94265 

0.6  0.90842  0.91788  0.92734  0.9368  0.94626  0.95572  0.96518 

0.7  0.93149  0.94086  0.95023  0.9596  0.96897  0.97834  0.98771 

0.8  0.95456  0.96384  0.97312  0.9824  0.99168  1.00096  1.01024 

0.9  0.97763  0.98682  0.99601  1.0052  1.01439  1.02358  1.03277 

1.0  1.00070  1.00980  1.01890  1.0280  1.03710  1.04620  1.05530 
 
 
Table 2a: Load parameter (q.a) of given plate thickness and permissible deflection for thin orthotropic CCCC plate in 
bending (when n1= Ey/Ex = 0.7 and n2 = G/Ex = 0.41) for aspect ratios (b/a) of 1.0, 1.25 and 1.50 

t 
(mm) 

q.a 

b/a = 1  b/a = 1.25  b/a = 1.5 

wall = 5 
mm 

wall = 10 
mm 

wall = 15 
mm 

wall = 20 
mm 

wall = 5 
mm 

wall = 10 
mm 

wall = 15 
mm 

wall = 20 
mm 

wall = 5 
mm 

wall = 10 
mm 

wall = 15 
mm 

wall = 20 
mm 

5  7.6048 15.2096  22.8144  30.4192 5.5360 11.0721 16.6081 22.1442 4.6683  9.3366 14.0048 18.6731

5.5  10.1220 20.2440  30.3660  40.4880 7.3685 14.7369 22.1054 29.4739 6.2135 12.4270 18.6404 24.8539

6  13.1411 26.2822  39.4233  52.5644 9.5663 19.1326 28.6988 38.2651 8.0668 16.1336 24.2003 32.2671

6.5  16.7078 33.4155  50.1233  66.8310 12.1627 24.3254 36.4880 48.6507 10.2562 20.5124 30.7686 41.0248

7  20.8676 41.7352  62.6027  83.4703 15.1909 30.3818 45.5727 60.7636 12.8097 25.6195 38.4292 51.2390

7.5  25.6662 51.3324  76.9986  102.6648 18.6841 37.3683 56.0524 74.7365 15.7554 31.5109 47.2663 63.0217

8  31.1493 62.2985  93.4478  124.5971 22.6756 45.3512 68.0268 90.7025 19.1213 38.2425 57.3638 76.4850

8.5  37.3624 74.7248  112.0872  149.4496 27.1986 54.3971 81.5957 108.7942 22.9352 45.8705 68.8057 91.7410

9  44.3512 88.7024  133.0536  177.4049 32.2862 64.5724 96.8585 129.1447 27.2254 54.4508 81.6762 108.901

9.5  52.1613 104.322 156.4840  208.6454 37.9717 75.9434 113.915 151.8868 32.0197 64.0394 96.0591 128.078

10  60.8384 121.676 182.5153  243.3537 44.2883 88.5766 132.864 177.1532 37.3462 74.6924 112.038 149.384

10.5  70.4281 140.856 211.2842  281.7123 51.2693 102.538 153.807 205.0770 43.2329 86.4658 129.698 172.931

11  80.9759 161.951 242.9278  323.9038 58.9477 117.895 176.843 235.7910 49.7078 99.4156 149.123 198.831

11.5  92.5276 185.055 277.5829  370.1106 67.3570 134.714 202.071 269.4279 56.7989 113.597 170.396 227.195

12  105.128 210.257 315.3864  420.5152 76.5302 153.060 229.590 306.1208 64.5342 129.068 193.602 258.137

12.5  118.825 237.650 356.4752  475.3002 86.5006 173.001 259.501 346.0024 72.9418 145.883 218.825 291.767
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Table 2b: Load parameter (q.a) of given plate thickness and permissible deflection for thin orthotropic CCCC plate in 
bending (when n1 = Ey/Ex = 0.7 and n2 = G/Ex = 0.41) for aspect ratios (b/a) of 1.0, 1.25 and 1.50 

t 
(mm) 

q.a 

b/a = 1.75  b/a = 2.0  b/a = 2.25 

wall = 5 
mm 

wall = 10 
mm 

wall = 15 
mm 

wall = 20 
mm 

wall = 5 
mm 

wall = 10 
mm 

wall = 15 
mm 

wall = 20 
mm 

wall = 5 
mm 

wall = 10 
mm 

wall = 15 
mm 

wall = 20 
mm 

5  4.2321  8.4643  12.6964  16.9286 3.9841 7.9683 11.9524 15.9366 3.8301  7.6601 11.4902 15.3203

5.5  5.6330 11.2660  16.8989  22.5319 5.3029 10.6058 15.9087 21.2116 5.0978 10.1956 15.2934 20.3913

6  7.3131 14.6263  21.9394  29.2526 6.8846 13.7692 20.6538 27.5384 6.6183 13.2367 19.8550 26.4734

6.5  9.2980 18.5960  27.8941  37.1921 8.7532 17.5063 26.2595 35.0126 8.4146 16.8293 25.2439 33.6586

7  11.6130 23.2260  34.8390  46.4520 10.9325 21.8650 32.7975 43.7299 10.5097 21.0194 31.5291 42.0388

7.5  14.2835 28.5670  42.8504  57.1339 13.4465 26.8930 40.3394 53.7859 12.9265 25.8529 38.7794 51.7058

8  17.3349 34.6697  52.0046  69.3394 16.3190 32.6381 48.9571 65.2762 15.6879 31.3759 47.0638 62.7518

8.5  20.7925 41.5850  62.3776  83.1701 19.5741 39.1482 58.7223 78.2964 18.8171 37.6342 56.4513 75.2684

9  24.6819 49.3637  74.0456  98.7274 23.2355 46.4710 69.7065 92.9421 22.3369 44.6739 67.0108 89.3477

9.5  29.0283 58.0565  87.0848  116.1131 27.3272 54.6545 81.9817 109.3089 26.2704 52.5408 78.8112 105.081

10  33.8571 67.7143  101.5714  135.4286 31.8731 63.7463 95.6194 127.4925 30.6405 61.2810 91.9215 122.562

10.5  39.1939 78.3877  117.5816  156.7755 36.8971 73.7943 110.691 147.5886 35.4702 70.9404 106.410 141.880

11  45.0639 90.1277  135.1916  180.2554 42.4231 84.8463 127.269 169.6926 40.7825 81.5650 122.347 163.130

11.5  51.4925 102.985 154.4774  205.9699 48.4751 96.9501 145.425 193.9002 46.6004 93.2008 139.801 186.401

12  58.5051 117.010 175.5154  234.0206 55.0768 110.153 165.230 220.3071 52.9468 105.893 158.840 211.787

12.5  66.1272 132.254 198.3817  264.5089 62.2522 124.504 186.756 249.0089 59.8447 119.689 179.534 239.378

 
Table 3: Maximum Deflection coefficients at n2 = 1 (isotropic case). 
Aspect ratio (b/a) Ibearugbulem et al. (2014) Present study Percentage difference 

1.0 0.00133 0.00132921 -0.059 
1.1 0.00159 0.00158587 -0.260 
1.2 0.00182 0.00181896 -0.057 
1.3 0.00203 0.00202456 -0.269 
1.4 0.00221 0.00220251 -0.340 
1.5 0.00236 0.00235478 -0.222 
1.6 0.00249 0.00248434 -0.228 
1.7 0.00260 0.00259437 -0.217 
1.8 0.00269 0.00268787 -0.079 
1.9 0.00277 0.00276753 -0.089 
2.0 0.00284 0.00283565 -0.153 
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Figure 1: Graph of Load parameter coefficients 
against thickness for a square plate 
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Conclusion 
The conclusions drawn from the study are as follows: 
The Load parameter equation for an orthotropic thin 
rectangular plate carrying lateral loads has been 
determined. The Load parameter coefficients for an 
orthotropic thin rectangular all-round clamped plate 
supporting lateral loads, have been determined for 
different aspect ratios, allowable deflection values and 
plate thicknesses. 
Since the results of the maximum deflection coefficients 
obtained from this work at n1 = (isotropic case) agrees 
with the results obtained by Ibearugbulem et al. (2014), 
it therefore follows that, the results obtained in this work 
for the Load coefficients at other n1 values (for which 
there are no existing results in literature), are also 
correct.  
The use of the equations and tables developed in this 
study is recommended for an easy and quick analysis of 
the problems of orthotropic thin rectangular plates 
carrying Lateral load. 
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