Analysis of Orthotropic Thin Rectangular Plate with all Edges Clamped Supporting Lateral Loads.

Ibearugbulem O.M.¹, Onwuka D.O.², Bertram D.I.^{3*} ^{1,2,3}Department of Civil Engineering, Federal University of Technology, P. M. B. 1526, Owerri, Imo State, Nigeria ^{*}Corresponding author: Bertram D.I E mail: dukebertram@@gmail.com

E-mail: dukebertram6@gmail.com

Abstract. The analysis of thin rectangular orthotropic all round clamped plate carrying lateral loads was investigated in this study. The Ritz total potential energy functional was used. The minimization of the total potential energy functional gave the expression for the coefficient of deflection. The coefficient of deflection was used to derive the equation for the lateral load parameter of an orthotropic thin rectangular plate carrying lateral load. A polynomial shape function which was obtained by the direct integration of the governing equation was used to obtain the stiffness coefficients which were substituted in the load parameter equation to obtain the load parameter coefficients for a CCCC plate carrying lateral forces. Numerical examples using permissible deflection (varying from 5mm to 20mm with 5mm interval) and plate thickness (varying from 5mm to 12.5 mm with 0.5mm intervals) were done to determine the load parameters corresponding to an orthotropic thin rectangular CCCC plate carrying lateral loads (when $n_1 = E_y/E_x = 0.7$ and $n_2 = G/E_x = 0.41$) for aspect ratios (b/a) of 1.0, 1.25 and 1.50

Keywords: Orthotropic, Plates, Lateral Loads, Direct Variation, Orthogonal Polynomial Shape Function.

Notations: a: Length of the plate along x axis, b: Length of the plate along y axis, w: Deflection equation of the plate, A:Coefficient of deflection of the plate, h :Shape function of the plate, \mathcal{E}_x : normal strain along x – direction, \mathcal{E}_{y} : normal strain along y – direction, γ_{xy} : Shear Strain on x – y plane, μ_{xy} : Poisson ratio along x axis, μ_{vx} : Poisson ratio on v axis, E_x : Elastic modulus in the x direction, E_y: Elastic modulus in the y direction, G_{xy} : Shear modulus in the x-y plane, \propto : Aspect Ratio = b/a, t: Thickness of the plate, x: Primary axis of the plate, y:Secondary axis of the plate, z: Axis corresponding to the thickness of the plate, C: Clamped Support, R: Non-dimensional coordinate equal to x/a, Q: Non-dimensional coordinate equal to y/b, g: Lateral load uniformly distributed, n₁: Ratio of the young modulus in y direction to the young modulus in the x direction, n_2 : Ratio of the shear modulus in x-y plane to the young modulus in the x direction.

1.0 Introduction

Flat plates are initially flat structural members bounded by two parallel planes, called faces and rectilinear or curvilinear surface called an edge or boundary. The generators of the cylindrical surface are perpendicular to the plane faces. The distance between these plane faces is called the thickness, which is small as compared with the other characteristic dimensions of the plate (Kapadiya H. M. and Patel A. D, 2015). Szilard (2004) defined thin plates as one whose ratio of its basic dimension to its thickness falls within the range $10 \le a/h$ ≤ 80 .

Plates are used greatly in many fields including but not limited to aerospace, naval, marine, mechanical, architectural, structural, and highway engineering. Specifically, plates are used in bridge decks, naval and marine structures, architectural structures, containers, airplane panels, spacecraft panels, ship decks, machine parts (components) and hydraulic structures. They are classified by their plan shapes as rectangular, circular, elliptical, square, triangular etc. They are also classified according to their materials of construction as homogeneous, heterogeneous, isotropic, anisotropic and orthotropic.

Thin rectangular plates can support loads in many ways. They can be laterally loaded (loads parallel to the thickness), axially or biaxially loaded with in-plane loads (loads perpendicular to the thickness) or a combination of lateral and in-plane load. They can also support dynamic loading. A thin rectangular panel subjected to increasing in-plane compressive load will at a point transit from its stable state of equilibrium to the unstable one, just like columns. Such transition is known as structural instability or buckling (Osadebe et al., 2016). Many aspects of the analysis of thin plates subjected to different loading conditions have been carried out by some scholars. The use of energy methods such as the Ritz method, Galerkin's equilibrium method, work error method was used by Ibearugbulem et al. (2014) to carry out the analysis of thin isotropic plates for the cases of pure bending and also for buckling cases. The flexural analysis of rectangular Kirchhoff plates with clamped and simply supported edges was done by Nwoji et al. (2017). They compared the maximum deflection and maximum bending moments obtained Timoshenko with solutions obtained by and Woinowsky-Krieger, and found them to be in good agreement for a four term displacement shape function. Cui (2007), in his master of philosophy thesis did the exact bending solutions of clamped rectangular thin plates using the symplectic elasticity approach and recorded that the maximum bending moment coefficients obtained were in agreement with the works of Timoshenko and Woinowsky-Krieger. The Galerkin method has been used by Onwuka and Iwuoha (2017), Iwuoha (2016) and Yattender (2005) in the buckling analysis of isotropic thin rectangular plates. While Onwuka and Iwuoha (2017) did on CCCC isotropic plate, Ventsel and Krauthermmer, Iyengar and Chajes, individually carried out works on biaxially loaded SSSS plate subjected to uniform in-plane loads on both axis. Ezeh et al. (2013) used finite difference method for the analysis of laterally loaded thin plates.

2.0 Theoretical Background

The Ritz total potential energy functional for pure bending of an isotropic plate is given as:

$$\Pi = \frac{D}{2} \iint \left[\left(\frac{\partial^2 w}{\partial x^2} \right)^2 + \left(\frac{\partial^2 w}{\partial_x \partial_y} \right)^2 + \left(\frac{\partial^2 w}{\partial y^2} \right)^2 \right] \partial x \, \partial y - q \iint w \, \partial x \, \partial y \qquad 1$$

Equation 1 is a functional. Minimizing of Equation 1 with respect to the displacement, w gives the equilibrium equation or the resultant force acting on the plate from where the problem can be solved.

3.0 Methodology

The method used in this work is as presented below.

3.1 Formulation of the Equation for the Lateral Load Parameter for an Orthotropic Thin Rectangular Plate carrying Lateral Loads

The total potential energy functional of an orthotropic thin rectangular plate carrying lateral load is obtained by writing Equation 1 in terms of an orthotropic plate where the plate material properties are not the same in all axes. This was done by Bertram [1] in his master's degree thesis. This is as given in Equation 2.

$$\Pi = \frac{1}{2} \iint \left[D_{X} \left(\frac{\partial^{2} w}{\partial x^{2}} \right)^{2} + 2B \left(\frac{\partial^{2} w}{\partial x \partial y} \right)^{2} + D_{Y} \left(\frac{\partial^{2} w}{\partial y^{2}} \right)^{2} \right] \partial x \, \partial y$$
$$- q \iint w \, \partial x \, \partial y \qquad 2$$

Where,

$$D_{X} = \frac{E_{x}t^{3}}{12(1 - n_{1}\mu_{xy}^{2})}$$
3

$$D_{Y} = \frac{E_{y}t^{3}}{12(1 - n_{1}\mu_{xy}^{2})}$$
 4

$$B = \frac{n_1 E_x \cdot \mu_{xy} t^3}{12 \left(1 - n_1 \mu_{xy}^2\right)} + \frac{2Gt^3}{12}$$
 5

 n_1 is the ratio of modulus of elasticity along y axis to that along x axis, $E_y\!/E_x\!.$

Consider a thin, rectangular, orthotropic plate, clamped on all edges and supporting uniform distributed lateral load, q as shown in Figure 1.

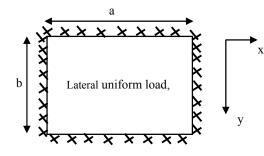


Figure 1: Schematic Representation of CCCC plate carrying uniformly distributed lateral load (q)

The Cartesian coordinates, x and y turned to are nondimensional coordinates, R and Q and expressed as:

$$R = \frac{x}{a}; \qquad Q = \frac{y}{b} \qquad 6$$

The deflection and the slope are zero along the clamped edges. Thus, the boundary conditions of the CCCC plate are

$$w(R = 0) = 0; w'^{R}(R = 0) = 0$$
 7

$$w(R = 1) = 0; w'^{R}(R = 1) = 0$$
 8

$$w(Q = 0) = 0; w'^Q(Q = 0) = 0$$

$$w(Q = 1) = 0; w'^Q(Q = 1) = 0$$
 10

Where w'^{*R*} and w'^{*Q*} are the first derivatives of the displacement

functions with respect to R and Q respectively.

From Equation 6, x = Ra and y = Qb.

Substituting x = Ra, y = Qb and $\alpha = b/a$ into Equation 2 gives:

$$\Pi = \frac{ab}{2a^4} \int_0^1 \int_0^1 \left(D_x \left[\frac{\partial^2 w}{\partial R^2} \right]^2 + \frac{2B}{\alpha^2} \left[\frac{\partial^2 w}{\partial R \partial Q} \right]^2 + \frac{D_y}{\alpha^4} \left[\frac{\partial^2 w}{\partial Q^2} \right]^2 \right) dR dQ - ab \int_0^a \int_0^b (qw) dR dQ$$
 11

General Variation of Total Potential Energy Functional

Minimizing Equation 11 with respect to deflection, w gives the equilibrium equation, otherwise known as the governing equation of equilibrium of forces as:

$$F = \frac{d\Pi}{dw} = \int_0^1 \int_0^1 \left(D_x \frac{\partial^4 w}{\partial R^4} + \frac{2B}{\alpha^2} \frac{\partial^4 w}{\partial R^2 \partial Q^2} + \frac{D_y}{\alpha^4} \frac{\partial^4 w}{\partial Q^4} - qa^4 \right) dR \, dQ = 0$$
 12

The solution of Equation 12 is summarized as shown in Equation 13.

$$w = \begin{bmatrix} 1 \ R \ R^2 R^3 R^4 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2/2 \\ a_3/6 \\ a_4/24 \end{bmatrix} \times \begin{bmatrix} 1 \ Q \ Q^2 Q^3 Q^4 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2/2 \\ b_3/6 \\ b_4/24 \end{bmatrix} \quad 13$$

Equation 13 shows the deflection of the plate as a product of the coefficient of deflection (A) and an orthogonal polynomial shape function (h).

14

w

Substituting w = Ah as given in Equation 14 into Equation 11 gives

$$\Pi = \frac{A^2}{2a^4} \iint \left[D_X \left(\frac{\partial^2 h}{\partial R^2} \right)^2 + \frac{2B}{\alpha^2} \left(\frac{\partial^2 h}{\partial R \partial Q} \right)^2 + \frac{D_Y}{\alpha^4} \left(\frac{\partial^2 h}{\partial Q^2} \right)^2 \right] ab \, \partial R \, \partial Q - qA \iint hab \, \partial R \, \partial Q$$
 15

Equation 15 can be written as shown in Equation 16

$$\Pi = \frac{A^2}{2a^4} \left[D_X K_X + \frac{2B}{\alpha^2} K_{XY} + \frac{D_Y}{\alpha^4} K_Y \right] ab$$
$$- qAK_q ab \qquad 16$$

Where,

$$K_{X} = \iint \left(\frac{\partial^{2}h}{\partial R^{2}}\right)^{2} \partial R \, \partial Q \qquad 17$$

$$K_{Y} = \iint \left(\frac{\partial^{2}h}{\partial Q^{2}}\right)^{2} \partial R \partial Q$$
 18

$$K_{XY} = \iint_{C} \left(\frac{\partial^2 h}{\partial R \partial Q} \right)^2 \partial R \partial Q$$
 19

$$K_{q} = \iint h \,\partial R \,\partial Q \tag{20}$$

Direct Variation of Total Potential Energy Functional

If Equation 16 is minimized with respect to the coefficient of deflection, A, direct governing equation (Equation 21) is obtained.

$$\frac{\partial \Pi}{\partial A} = 0 = \frac{A}{a^4} \Big[D_X K_X + \frac{2B}{\alpha^2} K_{XY} + \frac{D_Y}{\alpha^4} K_Y \Big] ab - q K_q ab$$
 21

Rearranging Equation 21, gives the coefficient of deflection (A) as:

$$A = \frac{qa^{*}K_{q}}{D_{X}K_{X} + \frac{2B}{\alpha^{2}}K_{XY} + \frac{DY}{\alpha^{4}}K_{Y}}$$
22

Equation 22 can be written as

$$\frac{AD_X}{qa^4} = \frac{[K_q]}{K_X + \frac{2\emptyset_{12}}{\alpha^2}K_{XY} + \frac{\emptyset_2}{\alpha^4}K_Y}$$
23

Where,

$$\phi_{12} = \frac{B}{D_X}$$
 24

$$\phi_2 = \frac{D_Y}{D_X}$$
 25

$$\frac{AD_X}{qa^4} = \frac{K_q}{K_T}$$
 26

Where;

$$K_{\rm T} = K_{\rm X} + \frac{2\phi_{12}}{\alpha^2} K_{\rm XY} + \frac{\phi_2}{\alpha^4} K_{\rm Y}$$
 27

Substituting Equation 26 into Equation 14 gives

$$\frac{wD_X}{qa^4} = \frac{K_q}{K_T}h$$
28

$$\frac{wD_X}{qa^4} = K_mh$$
29

Where, K_m is given as the ratio of load stiffness

coefficient to total material stiffness coefficient. This is defined mathematically as:

$$K_{m} = \left[\frac{K_{q}}{K_{T}}\right]$$
30

Let w_{all} represent the allowable deflection of the plate. Therefore,

$$w_{all} \left[\frac{D_X}{qa^4} \right] \ge K_m h \tag{31}$$

$$\left. \frac{qa^4}{D_X} \right] \le \frac{w_{all}}{K_m h}$$
32

Substituting Equation 3 into Equation 32

$$\left[\frac{12qa^4(1-n_1\mu_{xy}^2)}{E_xt^3}\right] \le \frac{w_{all}}{K_mh}$$
33

Rearranging Equation 33 gives

$$\left[\frac{qa^{*}}{t^{3}}\right] \leq \frac{w_{all} \cdot E_{x}}{12 K_{m} h(1 - n_{1} \mu_{xy}^{2})}$$
34

$$qa(a/t)^3 \le \frac{w_{all} \cdot E_x}{12 K_m h(1 - n_1 \mu_{xy}^2)}$$
 35

3.2 Peculiar Deflection Function and Stiffness Coefficients of Orthotropic Thin Rectangular CCCC Plate

The deflection equation shown in Equation 13 can be written for the x axis as:

$$w_x = a_0 + a_1 R + a_2 R^2 + a_3 R^3 + a_4 R^4$$
 36

Differentiating Equation 36 once with respect to R, gives Equation 37

$$w_x' = a_1 + 2a_2R + 3a_3R^2 + 4a_4R^3$$
 37

Substituting the boundary conditions given in Equations 7 and 8 into Equations 36 and 37 gives:

$$a_0 = 0$$
, $a_1 = 0$, $a_2 = a_4$ and $a_3 = -2a_4$ 38

Substituting Equations 38 into Equation 36 gives the deflection equation for CCCC plate along the x axis as:

$$w_{\rm x} = a_4 (R^2 - 2R^3 + R^4)$$
³⁹

In a similar manner, the deflection equation for CCCC plate along the y axis is given as:

$$w_y = b_4(Q^2 - 2Q^3 + Q^4)$$
 40

The general deflection equation is, therefore, obtained as the product of the deflection equations in both x and y axes: $h_{x}(P_{x}^{2} - 2P_{y}^{3} + P_{y}^{4})(Q_{x}^{2} - 2Q_{y}^{3})$

$$w = w_x w_y = a_4 b_4 (R^2 - 2R^3 + R^4) (Q^2 - 2Q^3 + Q^4)$$

$$+ Q^4)$$
41

Where:
$$A = a_4 b_4$$

 $h = (R^2 - 2R^3 + R^4)(Q^2 - 2Q^3 + Q^4)$ 42

3.3 Determination of the Maximum Lateral Load

Parameter for CCCC orthotropic plate

The stiffness coefficients given in Equations 17 to 20 are determined using Equation 42 as follows:

$$K_{X} = \int_{0}^{1} \int_{0}^{1} \left(\frac{\partial^{2}h}{\partial R^{2}}\right)^{2} \partial R \, \partial Q$$

= $\left(4 - \frac{48}{2} + \frac{192}{3} - \frac{288}{4} + \frac{144}{5}\right) \left(\frac{1}{5} - \frac{4}{6} + \frac{6}{7} - \frac{4}{8} + \frac{1}{9}\right) = 0.001269841$ 43

$$K_{XY} = \int_{0}^{1} \int_{0}^{1} \left(\frac{\partial^{2}h}{\partial R \partial Q}\right)^{2} \partial R \partial Q$$

= $\left(\frac{4}{3} - \frac{24}{4} + \frac{52}{5} - \frac{48}{6} + \frac{16}{7}\right) \left(\frac{4}{3} - \frac{24}{4} + \frac{52}{5} - \frac{48}{6} + \frac{16}{7}\right)$
= 0.00036281179 44

$$K_{Y} = \int_{0}^{1} \int_{0}^{1} \left(\frac{\partial^{2}h}{\partial Q^{2}}\right)^{2} \partial R \, \partial Q$$

$$= \left(\frac{1}{5} - \frac{4}{6} + \frac{6}{7} - \frac{4}{8} + \frac{1}{9}\right) \left(4 - \frac{48}{2} + \frac{192}{3} - \frac{288}{4} + \frac{144}{5}\right) = 0.001269841 \quad 45$$

$$K_{q} = \int_{0}^{1} \int_{0}^{1} h \, \partial R \, \partial Q = \left(\frac{1}{3} - \frac{2}{4} + \frac{1}{5}\right) \left(\frac{1}{3} - \frac{2}{4} + \frac{1}{5}\right)$$

$$= 0.00111111 \quad 46$$

 h_{max} for CCCC occurs at $R = Q = \frac{1}{2}$

$$h_{\max} = \left[\left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^4 \right] \left[\left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^4 \right] \\ = 0.00390625 \qquad 47$$

3.4 Numerical example

The material properties of CCCC plate include:

$$E_x = 207 \times 10^9 \, \text{N/m}^2$$
 ; $\,\mu_{xy} = 0.3; \; 0.1 \leq E_y/E_x \leq$

1;0.385 \leq G/E_x \leq 0.415; 0.03 \leq μ_{yx}/μ_{xy} \leq

0.3; $80 \le a/t \le 200$; $w_{all} =$

0.005 m, 0.010 m, 0.015 m, 0.020 m; Span, a = 1 m

Substituting Equations 43, 44 and 45 into Equation 27 gives

$$K_{T} = 0.001269841 + \frac{0.000725624\phi_{12}}{\alpha^{2}} + \frac{0.001269841\phi_{2}}{\alpha^{4}}$$

$$48$$

Substituting Equations 46 and 48 into Equation 30 gives

$$K_{m} = \frac{0.00111111}{0.001269841 + \frac{0.000725624\phi_{12}}{\alpha^{2}} + \frac{0.001269841\phi_{2}}{\alpha^{4}}} \quad 49$$

$$K_{m}$$

$$=\frac{1}{1.142858+\frac{0.6530623\phi_{12}}{\alpha^2}+\frac{1.142858\phi_2}{\alpha^4}}$$
50

Substituting Equation 3 and 5 into Equation 24

$$\begin{split} \phi_{12} &= \left(\frac{n_1 E_x.\,\mu_{xy}\,t^3}{12 \left(1-\,n_1 \mu_{xy}^2\right)} + \frac{2 G t^3}{12}\right) \times \frac{12 (1-\,n_1 \mu_{xy}^2)}{E_x t^3} \qquad 51 \\ \text{Simplifying Equation 51 gives} \end{split}$$

$$\emptyset_{12} = n_1 \cdot \mu_{xy} + 2n_2 \cdot \left(1 - n_1 \mu_{xy}^2\right)$$
 52

Substituting Equations 3 and 4 into Equation 25 gives

$$\phi_2 = \frac{E_y t^3}{12(1 - n_1 \mu_{xy}^2)} \times \frac{12(1 - n_1 \mu_{xy}^2)}{E_x t^3} = \frac{E_y}{E_x} = n_1$$
 53

If Equations 47 and 50 are substituted into Equation 35 then Equation 54 is obtained:

$$qa(a/t)^3$$

$$\leq \frac{w_{all} \cdot E_x \left(1.142858 + \frac{0.6530623\theta_{12}}{\alpha^2} + \frac{1.142858\theta_2}{\alpha^4}\right)}{12 x \, 0.00390625 \left(1 - n_1 \mu_{xy}^2\right)} \qquad 54$$

 $qa(a/t)^3$

$$\leq \frac{w_{all} \cdot E_{x} \left(24.380971 + \frac{13.931996\phi_{12}}{\alpha^{2}} + \frac{24.380971n_{1}}{\alpha^{4}}\right)}{\left(1 - n_{1}\mu_{xy}^{2}\right)} \quad 55$$

4.0 Results and Discussion

The values of the parameter ϕ_{12} required for the calculation of the lateral load parameter for an orthotropic plate are presented on Table 1. Plate thickness varying from 5mm to 12.5mm (with 0.5mm intervals), allowable deflection varying from 5mm to 20mm (with 5mm interval), aspect ratio values varying from 1.0 to 2.25 (with 0.25 interval) were used for the computation of the Load Parameters and the results presented on Table 2. The results presented on Table 2 were plotted for a square plate as shown on Figure 1. From Figure 1 and Table 2, it could be observed that, as the value of plate thickness increases, the Load Parameter of CCCC plate increases for any allowable deflection. This is so because the plate tends to sustain more loads when the thickness is increased due to increase in the stiffness of the plate.

The maximum deflection coefficients for the CCCC plate were calculated using Equation 32, in order to validate the results of this work. The results obtained at $n_1 = 1$ (isotropic case) were compared with that of Ibearugbulem et al. (2014) as presented on Table 3. From Table 3, it is seen that, the results obtained from this present work when $n_1 = 1$, is in very much agreement with established results of laterally loaded isotropic CCCC plate for different aspect ratios as the maximum percentage difference is -0.340. This therefore, validates the results of the generated load coefficients.

Table 1: Values of the parameter ϕ_{12} required for the calculation of the lateral load parameter for an orthotropic plate

	φ12												
		n ₂											
		0.385	0.39	0.395	0.4	0.405	0.41	0.415					
	0.1	0.79307	0.80298	0.81289	0.8228	0.83271	0.84262	0.85253					
ľu	0.2	0.81614	0.82596	0.83578	0.8456	0.85542	0.86524	0.87506					
	0.3	0.83921	0.84894	0.85867	0.8684	0.87813	0.88786	0.89759					
	0.4	0.86228	0.87192	0.88156	0.8912	0.90084	0.91048	0.92012					
	0.5	0.88535	0.89490	0.90445	0.9140	0.92355	0.93310	0.94265					
	0.6	0.90842	0.91788	0.92734	0.9368	0.94626	0.95572	0.96518					
	0.7	0.93149	0.94086	0.95023	0.9596	0.96897	0.97834	0.98771					
	0.8	0.95456	0.96384	0.97312	0.9824	0.99168	1.00096	1.01024					
	0.9	0.97763	0.98682	0.99601	1.0052	1.01439	1.02358	1.03277					
	1.0	1.00070	1.00980	1.01890	1.0280	1.03710	1.04620	1.05530					

Table 2a: Load parameter (q.a) of given plate thickness and permissible deflection for thin orthotropic CCCC plate in bending (when $n_1 = E_y/E_x = 0.7$ and $n_2 = G/E_x = 0.41$) for aspect ratios (b/a) of 1.0, 1.25 and 1.50

	q.a											
t		b/	/a = 1		b/a = 1.25				b/a = 1.5			
(mm)	w _{all} = 5 mm	w _{all} = 10 mm	w _{all} = 15 mm	w _{all} = 20 mm	w _{all} = 5 mm	w _{all} = 10 mm	w _{all} = 15 mm	w _{all} = 20 mm	w _{all} = 5 mm	w _{all} = 10 mm	w _{all} = 15 mm	w _{all} = 20 mm
5	7.6048	15.2096	22.8144	30.4192	5.5360	11.0721	16.6081	22.1442	4.6683	9.3366	14.0048	18.6731
5.5		20.2440	30.3660	40.4880		14.7369		29.4739	6.2135	12.4270	18.6404	24.8539
6	13.1411	26.2822	39.4233	52.5644	9.5663	19.1326	28.6988	38.2651	8.0668	16.1336	24.2003	32.2671
6.5	16.7078	33.4155	50.1233	66.8310	12.1627	24.3254	36.4880	48.6507	10.2562	20.5124	30.7686	41.0248
7	20.8676	41.7352	62.6027	83.4703	15.1909	30.3818	45.5727	60.7636	12.8097	25.6195	38.4292	51.2390
7.5	25.6662	51.3324	76.9986	102.6648	18.6841	37.3683	56.0524	74.7365	15.7554	31.5109	47.2663	63.0217
8	31.1493	62.2985	93.4478	124.5971	22.6756	45.3512	68.0268	90.7025	19.1213	38.2425	57.3638	76.4850
8.5	37.3624	74.7248	112.0872	149.4496	27.1986	54.3971	81.5957	108.7942	22.9352	45.8705	68.8057	91.7410
9	44.3512	88.7024	133.0536	177.4049	32.2862	64.5724	96.8585	129.1447	27.2254	54.4508	81.6762	108.901
9.5	52.1613	104.322	156.4840	208.6454	37.9717	75.9434	113.915	151.8868	32.0197	64.0394	96.0591	128.078
10	60.8384	121.676	182.5153	243.3537	44.2883	88.5766	132.864	177.1532	37.3462	74.6924	112.038	149.384
10.5	70.4281	140.856	211.2842	281.7123	51.2693	102.538	153.807	205.0770	43.2329	86.4658	129.698	172.931
11	80.9759	161.951	242.9278	323.9038	58.9477	117.895	176.843	235.7910	49.7078	99.4156	149.123	198.831
11.5	92.5276	185.055	277.5829	370.1106	67.3570	134.714	202.071	269.4279	56.7989	113.597	170.396	227.195
12	105.128	210.257	315.3864	420.5152	76.5302	153.060	229.590	306.1208	64.5342	129.068	193.602	258.137
12.5	118.825	237.650	356.4752	475.3002	86.5006	173.001	259.501	346.0024	72.9418	145.883	218.825	291.767

5

Table 2b: Load parameter (q.a) of given plate thickness and permissible deflection for thin orthotropic CCCC plate in
bending (when $n_1 = E_y/E_x = 0.7$ and $n_2 = G/E_x = 0.41$) for aspect ratios (b/a) of 1.0, 1.25 and 1.50

	q.a											
t		b/a	= 1.75		b/a = 2.0				b/a = 2.25			
(mm)	w _{all} = 5	w _{all} = 10	w _{all} = 15	$w_{all} = 20$	w _{all} = 5	w _{all} = 10	$w_{all} = 15$	$w_{all} = 20$	w _{all} = 5	w _{all} = 10	w _{all} = 15	w _{all} = 20
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
5	4.2321	8.4643	12.6964	16.9286	3.9841	7.9683	11.9524	15.9366	3.8301	7.6601	11.4902	15.3203
5.5	5.6330	11.2660	16.8989	22.5319	5.3029	10.6058	15.9087	21.2116	5.0978	10.1956	15.2934	20.3913
6	7.3131	14.6263	21.9394	29.2526	6.8846	13.7692	20.6538	27.5384	6.6183	13.2367	19.8550	26.4734
6.5	9.2980	18.5960	27.8941	37.1921	8.7532	17.5063	26.2595	35.0126	8.4146	16.8293	25.2439	33.6586
7	11.6130	23.2260	34.8390	46.4520	10.9325	21.8650	32.7975	43.7299	10.5097	21.0194	31.5291	42.0388
7.5	14.2835	28.5670	42.8504	57.1339	13.4465	26.8930	40.3394	53.7859	12.9265	25.8529	38.7794	51.7058
8	17.3349	34.6697	52.0046	69.3394	16.3190	32.6381	48.9571	65.2762	15.6879	31.3759	47.0638	62.7518
8.5	20.7925	41.5850	62.3776	83.1701	19.5741	39.1482	58.7223	78.2964	18.8171	37.6342	56.4513	75.2684
9	24.6819	49.3637	74.0456	98.7274	23.2355	46.4710	69.7065	92.9421	22.3369	44.6739	67.0108	89.3477
9.5	29.0283	58.0565	87.0848	116.1131	27.3272	54.6545	81.9817	109.3089	26.2704	52.5408	78.8112	105.081
10	33.8571	67.7143	101.5714	135.4286	31.8731	63.7463	95.6194	127.4925	30.6405	61.2810	91.9215	122.562
10.5	39.1939	78.3877	117.5816	156.7755	36.8971	73.7943	110.691	147.5886	35.4702	70.9404	106.410	141.880
11	45.0639	90.1277	135.1916	180.2554	42.4231	84.8463	127.269	169.6926	40.7825	81.5650	122.347	163.130
11.5	51.4925	102.985	154.4774	205.9699	48.4751	96.9501	145.425	193.9002	46.6004	93.2008	139.801	186.401
12	58.5051	117.010	175.5154	234.0206	55.0768	110.153	165.230	220.3071	52.9468	105.893	158.840	211.787
12.5	66.1272	132.254	198.3817	264.5089	62.2522	124.504	186.756	249.0089	59.8447	119.689	179.534	239.378

Table 3: Maximum Deflection coefficients at $n_2 = 1$ (isotropic case).

Aspect ratio (b/a)	Ibearugbulem et al. (2014)	Present study	Percentage difference
1.0	0.00133	0.00132921	-0.059
1.1	0.00159	0.00158587	-0.260
1.2	0.00182	0.00181896	-0.057
1.3	0.00203	0.00202456	-0.269
1.4	0.00221	0.00220251	-0.340
1.5	0.00236	0.00235478	-0.222
1.6	0.00249	0.00248434	-0.228
1.7	0.00260	0.00259437	-0.217
1.8	0.00269	0.00268787	-0.079
1.9	0.00277	0.00276753	-0.089
2.0	0.00284	0.00283565	-0.153

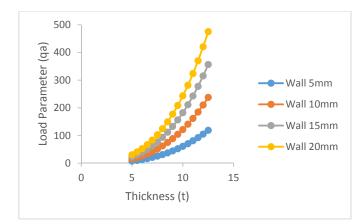


Figure 1: Graph of Load parameter coefficients against thickness for a square plate

Conclusion

The conclusions drawn from the study are as follows:

The Load parameter equation for an orthotropic thin rectangular plate carrying lateral loads has been determined. The Load parameter coefficients for an orthotropic thin rectangular all-round clamped plate supporting lateral loads, have been determined for different aspect ratios, allowable deflection values and plate thicknesses.

Since the results of the maximum deflection coefficients obtained from this work at n_1 = (isotropic case) agrees with the results obtained by Ibearugbulem et al. (2014), it therefore follows that, the results obtained in this work for the Load coefficients at other n_1 values (for which there are no existing results in literature), are also correct.

The use of the equations and tables developed in this study is recommended for an easy and quick analysis of the problems of orthotropic thin rectangular plates carrying Lateral load.

References

- Bertram D.I (2019). Analysis of Orthotropic Thin Rectangular Plates Subjected to Both In-Plane Compression and Bending using Ritz Energy Method. MENG Thesis submitted to the post graduate school, Federal University of Technology Owerri, Nigeria.
- Chajes A. (1974). Principles of Structural Stability Theory. Previse-Hall Inc. Eaglewood Clilis NJ, USA. pp 238-297.
- Cui S. (2007). Symplectic Elasticity Approach for Exact Bending Solutions of Rectangular Thin Plates. A Master of Philosophy thesis. City University of Hong Kong.
- Ezeh, J. C., Ibearugbulem, O. M. and Onyechere, C. I. (2013). Pure Bending Analysis of Thin Rectangular Flat Plates Using Ordinary Finite Difference Method. International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue, pp 20-23.
- Ibearugbulem, O.M., Ezeh, J.C., and Ettu, L.O (2014). Energy Methods in Theory of Rectangular Plates (Use of Polynomial Shape Functions), Liu House of Excellence Venture – Imo State, Nigeria.
- 6. Iwuoha S.E (2016). Buckling Analysis of Plates Subjected to Biaxial Forces Using Galerkin's Method. Master of Engineering thesis submitted to the department of Civil Engineering, Federal University of Technology, Owerri.
- Iyengar (1988). Structural Stability of Columns and Plates. Ellis Horwood Limited, Chichester, Toronto.
- 8. Kapadiya H. M. and Patel A. D (2015). Review of Bending Solutions of Thin Plates. International

Journal of Scientific Research and Development (IJSRD) vol. 3 Issue 03, 2015, ISSN: 2321-0613, pp. 1709-1712. 2015.

- Nwoji, C.U., Mama, B.O.2, Ike, C. C. and Onah, H.N (2017). Galerkin-Vlasov Method for the Flexural Analysis of Rectangular Kirchhoff Plates with Clamped and Simply Supported Edges. IOSR Journal of Mechanical and Civil Engineering Volume 14, Issue 2 Ver. I (Mar. - Apr. 2017), PP 61-74.
- Onwuka D.O and Iwuoha S.E (2017). Elastic Instability Analysis of Biaxially Compressed Flat Rectangular Isotropic all Round Clamped (CCCC) Plates. MOJ Civil Engineering, Volume 2 Issue 2.
- Osadebe N. N, Nwokike V.C and Oguaghamba O. A. (2016). Stability Analysis Of SSSS Thin Rectangular Plate Using Multi – Degrees of Freedom Taylor Maclaurin's Series in Galerkin's Variational Method. Nigerian Journal of Technology (NIJOTECH) Vol. 35, No. 3, July 2016, pp. 503 – 509.
- 12. Szilard Rudolph (2004). Theories and Applications of Plates Analysis. Classical, Numerical and Engineering methods. John Wiley and Sons Inc. Hoboken USA.
- 13. Ventsel E and Krauthermmer T. (2001). Thin plates and shells. Theory, Analysis and Applications. Marcel Dekker, New York.
- Yattender R.D (2005) An Approximate Solution To Buckling Of Plates By The Galerkin Method. Master of Science thesis, University Of Texas at Arlington.

7